Loading... Please wait...

Interior-Point Polynomial Algorithms in Convex Programming

Hover over image to zoom

Order Code:

 Product Description

By Yurii Nesterov and Arkadii Nemirovskii


1994 / ix + 405 pages / Softcover / ISBN: 978-0-898715-15-6 / List Price $133.50 / SIAM Member Price $93.45 / Order Code AM13

Written for specialists working in optimization, mathematical programming, or control theory. The general theory of path-following and potential reduction interior point polynomial time methods, interior point methods, interior point methods for linear and quadratic programming, polynomial time methods for nonlinear convex programming, efficient computation methods for control problems and variational inequalities, and acceleration of path-following methods are covered.

In this book, the authors describe the first unified theory of polynomial-time interior-point methods. Their approach provides a simple and elegant framework in which all known polynomial-time interior-point methods can be explained and analyzed; this approach yields polynomial-time interior-point methods for a wide variety of problems beyond the traditional linear and quadratic programs.

The book contains new and important results in the general theory of convex programming, e.g., their "conic" problem formulation in which duality theory is completely symmetric. For each algorithm described, the authors carefully derive precise bounds on the computational effort required to solve a given family of problems to a given precision. In several cases they obtain better problem complexity estimates than were previously known. Several of the new algorithms described in this book, e.g., the projective method, have been implemented, tested on "real world" problems, and found to be extremely efficient in practice.

Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.

Chapter 1: Self-Concordant Functions and Newton Method; Chapter 2: Path-Following Interior-Point Methods; Chapter 3: Potential Reduction Interior-Point Methods; Chapter 4: How to Construct Self- Concordant Barriers; Chapter 5: Applications in Convex Optimization; Chapter 6: Variational Inequalities with Monotone Operators; Chapter 7: Acceleration for Linear and Linearly Constrained Quadratic Problems; Bibliography; Appendix 1; Appendix 2. 



ISBN: 9780898715156

 Find Similar Products by Category

Vendors Other Products

 Product Reviews

This product hasn't received any reviews yet. Be the first to review this product!

You Recently Viewed...



Follow us on

Copyright 2019 SIAM Bookstore. All Rights Reserved.
Sitemap | BigCommerce Premium Themes by PSDCenter

Society for Industrial and Applied Mathematics 3600 Market St., 6th Fl. Philadelphia, PA 19104-2688 USA +1-215-382-9800 FAX: +1-215-386-7999 www.siam.org email: siambooks@siam.org

Click the button below to add the Interior-Point Polynomial Algorithms in Convex Programming to your wish list.