
2000 / xxx + 410 pages / Softcover / ISBN: 9780898714715 / List Price $88.00 / SIAM Member Price $61.60 / Order Code SE11
Largescale problems of engineering and scientific computing often require solutions of eigenvalue and related problems. This book gives a unified overview of theory, algorithms, and practical software for eigenvalue problems. It organizes this large body of material to make it accessible for the first time to the many nonexpert users who need to choose the best stateoftheart algorithms and software for their problems. Using an informal decision tree, just enough theory is introduced to identify the relevant mathematical structure that determines the best algorithm for each problem.
The algorithms and software at the "leaves" of the decision tree range from the classical QR algorithm, which is most suitable for small dense matrices, to iterative algorithms for very large generalized eigenvalue problems. Algorithms are presented in a unified style as templates, with different levels of detail suitable for readers ranging from beginning students to experts. The authors' comprehensive treatment includes a treasure of further bibliographic information.
Contents
List of Symbols and Acronyms; List of Iterative Algorithm Templates; List of Direct Algorithms; List of Figures; List of Tables; Chapter 1: Introduction; Chapter 2: A Brief Tour of Eigenproblems; Chapter 3: An Introduction to Iterative Projection Methods; Chapter 4: Hermitian Eigenvalue Problems; Chapter 5: Generalized Hermitian Eigenvalue Problems; Chapter 6: Singular Value Decomposition; Chapter 7: NonHermitian Eigenvalue Problems; Chapter 8: Generalized NonHermitian Eigenvalue Problems; Chapter 9: Nonlinear Eigenvalue Problems; Chapter 10: Common Issues; Chapter 11: Preconditioning Techniques; Appendix: Of Things Not Treated; Bibliography; Index
Royalties from the sale of this book are contributed to the SIAM student travel fund.
ISBN: 9780898714715